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§1 Mathematical background

§1.1 Motivation

In classical computation, the elementary unit of information is the bit, which takes a
value in {0, 1}. This gives the result of a single binary decision problem, where the zero
and one correspond to different answers to the problem. Binary strings of length greater
than one are used to provide more than 2 answers to a problem; if we have n bits, we
can encode 2n different messages.

Classical computation is understood to be the processing of information: taking an ini-
tial bit string and and updating it by a prescribed sequence of steps. The steps are taken
to be the action of local Boolean logic gates, such as conjunction, disjunction, or negation.
At each step, a small number of bits in prescribed locations are edited.

Information in the real world must be tied to a physical representation. For example,
bits in a processor are often represented by different voltages of specific components.
Importantly, there is no informationwithout representation. Performing a computation
classically must therefore involve the evolution of a physical system over time, which is
coverned by the laws of classical physics.

However, nature does not abide by classical physics at subatomic levels, and we must
use quantum mechanics to accurately model such behaviours. One such behaviour
modelled by quantummechanics is the superposition principle, that the corresponding
quantum analog of the bit need not be in precisely one state. Quantum entanglement
is the phenomenon where particles can be linked in such a way that their states can be
manipulated even at a distance. Quantum measurement is probabilistic and alters the
underlying system.

Quantum information and computation therefore exploits these features of quantum
mechanics to address issues of information storage, communication, computation, and
cryptography. The features of quantum mechanics seem to allow us benefits which are
beyond the limits of classical information and computation, even in principle. Note that
a quantum computer cannot perform any task that cannot in principle be performed
classically. We only hope that quantum techniques allow a reduction in the complexity
of certain algorithms.

§1.2 Benefits of quantum information and computation

In complexity theory, we study the hardness of a certain computational task. One must
consider the resources required for the task; which in classical computation are normally
limited to time (measured in number of computational steps) and space (amount of
memory required).
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If an algorithm takes time bounded by a polynomial function in the input size n, we
say the algorithm is polynomial-time. Otherwise, we say it is an exponential-time
algorithm. Polynomial-time algorithms are typically taken to be computable in prac-
tice, but exponential-time algorithms are usually considered only computable in prin-
ciple. Quantum mechanical techniques can provide polynomial-time algorithms that
have only exponential-time classical versions. One example is Shor’s integer factorisa-
tion algorithm.

Quantum states of physical sytems can be used to encode information, such as spin
states of electrons. There are certain tasks possible with such quantum states which are
impossible in classical physics; one example is quantum teleportation.

There are also some technological issues with classical physics. Components of pro-
cessors have becomeminified to atomic scale, and therefore they cannot be shrunkmuch
further without dealing with the effects of quantum mechanics. Conversely, there are
technological challenges with quantum physics. Quantum systems are very fragile, and
modern quantum computers typically require temperatures close to absolute zero to re-
duce noise.

Quantum supremacy refers to the hypothetical moment at which a programmable
quantum computer can first solve a problem in practice that a classical computer
cannot. At the time of writing, there is no concensus that quantum supremacy has been
achieved.

§1.3 Hilbert spaces

Every quantum mechanical system is associated with a Hilbert space V , a complex in-
ner product space that is a complete metric space with respect to the distance function
induced by the inner product. We use Dirac’s bra-ket notation: a vector is represented
by |v〉 ∈ V , and its conjugate transpose is denoted 〈v| ∈ V⋆. If V = Cn, we write

|ψ〉 =

a1
...
an

 ; 〈ψ| =
(
a⋆1 · · · a⋆n

)

The inner product of ψ and φ is written 〈ψ|φ〉. Recall that an inner product satisfies

• 〈ψ|ψ〉 ≥ 0, and equal to zero if and only if |ψ〉 = 0;

• linearity in the second argument, so 〈ψ|aφ1 + bφ2〉 = a 〈ψ|φ1〉 + b 〈ψ|φ2〉;

• antilinearity in the first argument, so 〈aψ1 + bψ2|φ〉 = a⋆ 〈ψ1|φ〉 + b⋆ 〈ψ2|φ〉;

• skew-symmetry, so 〈ψ|φ〉⋆ = 〈φ|ψ〉;
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and induces a norm ‖ψ‖ = ‖|ψ〉‖ =
√

〈ψ|ψ〉. In this course, we will often consider
V = C2 and define

|0〉 =
(

1
0

)
; |1〉 =

(
0
1

)
For an arbitrary |v〉 ∈ C2, we can write |v〉 = a |0〉 + b |1〉, giving

|v〉 =
(
a
b

)
; 〈v| =

(
a⋆ b⋆

)
If |w〉 = c |0〉 + d |1〉, then 〈v|w〉 = a⋆c+ b⋆d.

We can also compute the outer product of two vectors, defined to be |ψ〉〈φ| = |ψ〉 〈φ|.
If V = Cn, the outer product is an n × n matrix. An orthonormal basis (|i〉)ni=1 for V is
called complete if∑n

i=1 |i〉〈i| is the identity matrix.

If V has a complete orthonormal basis, we can write |ψ〉 =
∑n
i=1 ci |i〉 for some ci. If

〈ψ|ψ〉 = 1, we say |ψ〉 is normalised. In this case, ∑ |ci|2 = 1, and the |ci|2 form a
discrete probability distribution. We call the ci the probability amplitudes.

Let V,W be vector spaces, where dim V = n,dim W = m. Let |v〉 ∈ V, |w〉 ∈ W . Suppose
|v〉 =

(
a1 · · · an

)⊺
, and |w〉 =

(
b1 · · · bm

)⊺
. Then, |v〉 ⊗ |w〉 is the tensor product

of |v〉 and |w〉, defined by

|v〉 ⊗ |w〉 =



a1b1
...

a1bm
a2b1
...

anbm


∈ V ⊗ W

If (|ei〉)ni=1 is a complete orthonormal basis for V and (|fj〉)mj=1 is a complete orthonor-
mal basis for W , then (|ei〉 ⊗ |fj〉)n,mi,j=1 is a complete orthonormal basis for V ⊗ W . We
sometimes write |v〉 ⊗ |w〉 as |v〉 |w〉 or |vw〉. Note that this is not commutative

If |α〉 ∈ V , we can write |α〉 =
∑
ai |ei〉, and similarly if |β〉 ∈ W , we can write |β〉 =∑

bj |fj〉. Then, |αβ〉 =
∑
aicj |eifj〉.

We say |Ψ〉 ∈ V ⊗ W is a product vector if |Ψ〉 = |ψ〉 ⊗ |φ〉 for some ψ,φ. Vectors that
are not product vectors are called entangled vectors.

Let V = C2 = W . Define
∣∣φ+〉 = 1√

2(|00〉 + |11〉). Suppose
∣∣φ+〉 = |ψ〉 ⊗ |φ〉 = (a |0〉 +

b |1〉) ⊗ (c |0〉 + d |1〉). Then,
∣∣φ+〉 = ac |00〉 + ad |01〉 + bc |10〉 + bd |11〉. So one of a and d,

and one of b and c is equal to zero, contradicting the assumption, so
∣∣φ+〉 is entangled.

We define the inner product on the product space by defining

〈φ1|ψ2〉 = (〈α1| 〈β1|)(|β2〉 |α2〉) = 〈α1|α2〉 〈β1|β2〉
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where |ψi〉 = |αi〉 |βi〉. In the general case, |A〉 =
∑
aij |ei〉 |fj〉 , |B〉 =

∑
bij |ei〉 |fj〉, and

we define

〈A|B〉 =
(∑

a⋆ij 〈ei| 〈fj |
)(∑

bij |ei〉 |fj〉
)

=
∑

a⋆ijbijδii′δjj′ =
∑

a⋆ijbij

where δ is the Kronecker δ symbol.

We define the k-fold tensor power of a vector space V by

V⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

If V = C2, this has dimension 2k, and complete orthonormal basis |i1 . . . ik〉 for ij ∈
{0, 1}. Note that |v〉 |w〉 6= |w〉 |v〉.

§1.4 First postulate: quantum states

In this course, we will restrict our attention to finite-dimensional vector spaces, and
finite time evolution. We describe the postulates for quantum mechanics that we will
work under.

The first postulate is that, given an isolated quantum mechanical system S, we can as-
sociate a finite-dimensional vector space V . The physical state of the system is given by
a unit vector |ψ〉 in V . More precisely, the state is given by a ray, an equivalence class
of vectors eiθ |ψ〉 for θ ∈ R. No measurements can distinguish states in a given equival-
ence class. Note that states a |ψ1〉 + b |ψ2〉 and a |ψ1〉 + beiθ |ψ2〉 can be distinguished by
measurement, since the phase difference is relative, not global.

Example 1.1
Let V = C2 with (complete orthonormal) basis |0〉 , |1〉. The elementary unit of
quantum information is known as the qubit, which is any quantum system with
V = C2. The spin of an electron, which is some superposition of spin-up and spin-
down, can be modelled by C2. A property of the polarisation of a photon, such as
vertical or horizontal, or right-circular or left-circular, can also be modelled in this
way.

Define |+〉 = 1√
2(|0〉 + |1〉) and |−〉 = 1√

2(|0〉 − |1〉). This is another complete or-
thonormal basis for V , sometimes called the conjugate basis.

§1.5 Second postulate: composite systems

The second postulate of quantum mechanics is that two quantum systems S1, S2 with
associated vector spaces V1,V2 can be composed into the composite systemwith vector
space V1 ⊗ V2.
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Example 1.2
Consider V⊗n, the space of n qubits. An orthonormal basis is |i1 . . . in〉 where ij ∈
{0, 1}. A vector in V⊗n can be written ∑ ai1...in |i1 . . . in〉. There are 2n different
amplitudes ai1...in , providing exponential growth in information. However, in a
product state, we obtain only linear growth in information.

§1.6 Observables

An observable is a property of a physical system which can, in theory, be measured.
Mathematically, these are modelled by linear self-adjoint (or Hermitian) operators.

The action of a linear operator A on a state space V is a written A |ψ〉. By linearity, we
have A(a |ψ〉 + b |φ〉) = aA |ψ〉 + bA |φ〉 for a, b ∈ C. For any operator A acting on V ,
there is a unique linear operator A† such that 〈v|Aw〉 =

〈
A†v

∣∣∣w〉, called the adjoint of
A; operators equal to their adjoints are called self-adjoint.

We can easily show that (AB)† = B†A†. By convention, we define |ψ〉† = 〈ψ|, so for a
self-adjoint operator A, we have (A |ψ〉)† = 〈ψ|A. There are four important operators
which act on the single-qubit space C2.

σ0 =
(

1 0
0 1

)
; σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)

σ0 is the identitymatrix, and σx, σy, σz are called the Paulimatrices. The actions of these
matrices on the basis vectors |0〉 and |1〉 are

σ0 |0〉 = |0〉 ; σ0 |1〉 = |1〉 ; σx |0〉 = |1〉 ; σx |1〉 = |0〉 ;

σy |0〉 = i |1〉 ; σy |1〉 = −i |0〉 ; σz |0〉 = |0〉 ; σz |1〉 = − |1〉

Note that
σxσy = iσz; σyσz = iσx; σzσx = iσy

Intuitively, σx is a bit flip, σy is a phase flip, and σz is a combined bit and phase flip.

§1.7 Dirac notation for linear operators

Let |v〉 = a |0〉 + b |1〉, and |w〉 = c |0〉 + d |1〉. The outer product is

M = |v〉〈w| =
(
a
b

)(
c⋆ d⋆

)
=
(
ac⋆ ad⋆

bc⋆ bd⋆

)

which is a linear map on V = C2. One can show that M |x〉 = (|v〉〈w|) |x〉 = |v〉 〈w|x〉,
which is the scalar product of the vector |v〉 with the inner product 〈w|x〉. Such outer
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products yield the linear maps from C2 to C2 that have rank 1, and the kernel of M is
the subspace of vectors orthogonal to |w〉. Note that

|0〉〈0| =
(

1 0
0 0

)
; |0〉〈1| =

(
0 1
0 0

)
; |1〉〈0| =

(
0 0
1 0

)
; |1〉〈1| =

(
0 0
0 1

)

Hence, we can write

A =
(
a b
c d

)
=⇒ A = a |0〉〈0| + b |0〉〈1| + c |1〉〈0| + d |1〉〈1|

In particular, |0〉〈0| , |0〉〈1| , |1〉〈0| , |1〉〈1| forms a basis for the vector space V ⊗ V⋆ of linear
maps on V . Note also that 〈w|v〉 = Tr |v〉〈w|.

§1.8 Projection operators

Suppose that |v〉 is a normalised vector, so 〈v|v〉 = 1. Then, Πv = |v〉〈v| is the projection
operator onto v, satisfying ΠvΠv = Πv and Π†

v = Πv. In Dirac notation, one can see
that

ΠvΠv = |v〉〈v| |v〉〈v| = |v〉 〈v|v〉 〈v| = |v〉〈v| = Πv

If |a〉 is orthogonal to |v〉, then Πv |a〉 = |v〉 〈v|a〉 = 0. Therefore, Πv |x〉 is the vector
obtained by projection of |x〉 onto the one-dimensional subspace of V spanned by |v〉.

Now suppose E is any linear subspace of some vector space V , and |e1〉 , . . . , |ed〉 is any
orthonormal basis of E . Then,

ΠE = |e1〉〈e1| + · · · + |ed〉〈ed|

is the projection operator into E . This property can be checked by extending
|e1〉 , . . . , |ed〉 into an orthonormal basis of V .

Note that if |x〉 = A |v〉, then 〈x| = (A |v〉)† = |v〉†A† = 〈v|A†. Therefore, when con-
structing inner products, we can write 〈a|M |b〉 as 〈a|x〉 or 〈y|b〉 where |x〉 = M |b〉 or
|y〉 = M † |a〉 (so that we have 〈y| = 〈a|M).

§1.9 Tensor products of linear maps

Suppose A,B are linear maps C2 → C2. Then, we define A⊗B : C2 ⊗C2 → C2 ⊗C2 by
its action on the basis (A ⊗ B) |i〉 |j〉 = A |i〉B |j〉. In particular, for product vectors we
obtain (A⊗B)(|v〉 |w〉) = A |v〉 ⊗B |w〉.
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The 4 × 4 matrix of components of A⊗B has a simple block form, which can be seen by
writing down its action on basis states.

A =
(
a b
c d

)
; B =

(
p q
r s

)
=⇒ A⊗B =

(
aB bB
cB dB

)
=


ap aq bp bq
ar as br bs
cp cq dp dq
cr cs dr ds


Note that A ⊗ I and I ⊗ A can be thought of as acting only on one of the subspaces.
Consider |Φ〉 = 1√

2(|00〉 + |11〉), and define A as above. Then,

(A⊗ I) |Φ〉 = 1√
2

[(A |0〉) |0〉 + (A |1〉) |1〉]

= 1√
2

[(a |0〉 + c |1〉) |0〉 + (b |0〉 + d |1〉) |1〉]

= 1√
2

[a |00〉 + b |01〉 + c |10〉 + d |11〉]

(I ⊗A) |Φ〉 = 1√
2

[|0〉 (A |0〉) + |1〉 (A |1〉)]

= 1√
2

[|0〉 (a |0〉 + c |1〉) + |1〉 (b |0〉 + d |1〉)]

= 1√
2

[a |00〉 + c |01〉 + b |10〉 + d |11〉]

§1.10 Third postulate: physical evolution of quantum systems

The third postulate of quantum mechanics is that any physical finite-time evolution of
a closed quantum system is represented by a unitary operation on the corresponding
vector space of states. Recall that the following are equivalent for a linear operator U :

• U is unitary, so U−1 = U †;

• U maps an orthonormal basis to an orthonormal set of vectors;

• the columns (or rows) of U form an orthonormal set of vectors.

If a system is in a state |ψ(t1)〉 at a time t1 and later in a state |ψ(t2)〉 at a time t2, then
|ψ(t2)〉 = U(t1, t2) |ψ(t1)〉 for some unitary map U(t1, t2) which depends only on t1, t2.
This operator is derived from the Schrödinger equation, which is

iℏ
∂

∂t
|ψ(t)〉 = H |ψ(t)〉

whereH is a self-adjoint operator known as theHamiltonian. In particular, ifH is time-
independent, we have

U(t1, t2) = e− i
ℏH(t2−t1)
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In the more general case,

U(t1, t2) = e
− i

ℏ

∫ t2
t1
H(t)dt

The unitary evolution of a closed system is deterministic.

§1.11 Partial inner products

A vector |v〉 ∈ V defines a linear map V ⊗ W → W called the partial inner productwith
|v〉, defined on the basis |ei〉 |fj〉 of V ⊗ W by |ei〉 |fj〉 7→ 〈v|ei〉 |fj〉. Similarly, for any
|w〉 ∈ W , we obtain a partial inner product V ⊗ W → V . If V,W are isomorphic, we
must specify which partial inner product is intended.

§1.12 Fourth postulate: quantum measurement

Consider a system S with state space V , and let A be an observable. A can be written
as its spectral projection A =

∑
k akPk where A |φk〉 = ak |φk〉. If ak is nondegenerate,

Pk = |φk〉〈φk|. If ak is degenerate of multiplicitym, then Pk =
∑m
i=1

∣∣φik〉〈φik∣∣.
The fourth postulate is thatwhen an observable ismeasured, the resultingmeasurement
will be an eigenvalue aj , with probability p(aj) = 〈ψ|Pj |ψ〉. Then, |ψ〉 is replaced with
the post-measurement state

Pj |ψ〉√
p(aj)

This is known as Born’s rule. Such a measurement is called a projective measurement
(or sometimes a von Neumann measurement), since the post-measurement state is
given by a projection operator.

Suppose A,B are operators that do not commute, so [A,B] = AB −BA 6= 0. Then, the
measurement of A will influence the outcome probabilities of a subsequent measure-
ment of B. For instance, suppose |ψ〉 = |+〉 , A = σz, B = σx.

§1.13 Complete and incomplete projective measurements

Let |ψ〉 ∈ V be a state in a state space of dimension n. Let B = {|ei〉} be a set of n ortho-
gonal basis vectors for V . Then |ψ〉 =

∑
aj |ej〉 where ak = 〈ek|ψ〉. If the outcomes of a

measurement are the indices of the basis vectors j = 1, . . . , n, we have p(j) = 〈ψ|Pj |ψ〉
where Pj = |ej〉〈ej |. Therefore, p(j) = |〈ψ|ej〉|2 = |aj |2. If the outcome is j, the post-
measurement state is

Pj |ψ〉√
p(j)

= |ej〉 〈ej |ψ〉√
p(j)

= |ej〉
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Hence the state collapses to a basis vector. Taking another measurement immediately in
the same basis, we obtain the result j with probability 1. Such ameasurement is called a
complete projective measurement; it is called complete as all Pj are of rank 1. When we
measure a state |ψ〉 in a basis, it is often helpful to consider an orthogonal decomposition
of V using the basis vectors.

Conversely, an incomplete projective measurement corresponds to an arbitrary ortho-
gonal decomposition of V . Consider a decomposition of V into d mutually orthogonal
subspaces E1, . . . , Ed, so V = E1 ⊕ · · · ⊕ Ed, and dim V =

∑
dim Ej . Let Πi be a projection

operator onto Ei. Since the spaces are mutually orthogonal, ΠiΠj = δijΠi. Consider a
measurement with outcomes 1, . . . , d representing a particular subspace. The probabil-
ity of observing outcome i is 〈ψ|Πi|ψ〉. If the outcome is i, |ψ〉 is replaced with Πi|ψ〉√

p(i)
. In

this case, the Πi are no longer rank 1 projection operators. If Ei has basis {|fj〉}, we can
write Πi =

∑
|fj〉〈fj |.

Incomplete projective measurement is a generalisation of complete projective measure-
ment. One can refine an incomplete measurement into a complete measurement by
first considering a complete measurement, and then summing the relevant outcome
probabiilities to obtain a description of the incomplete measurement probabilities. Let{∣∣∣e(j)

k

〉}dj
k=1

be a basis for Ej for each j. Then V =
⊕d

i=1 Ej has orthonormal basis{∣∣∣e(j)
k

〉}
j,k
. Then,

〈
e

(k1)
i

∣∣∣e(k2)
j

〉
= δijδk1k2 .

Consider a two-bit string b1b2. The parity of this string is b1 ⊕ b2, where ⊕ represents
addition modulo 2. Consider the orthogonal decomposition of V into E0 ⊕ E1, where
E0 = span {|00〉 , |11〉} is the even parity subspace, and E1 = span {|01〉 , |10〉} is the odd
parity subspace. The outcomes of an incomplete measurement are then the labels 0 and
1 of the subspaces E0 and E1. Note that {|00〉 , |01〉 , |10〉 , |11〉} is a complete orthonormal
basis for V , so we can consider the complete projective measurement. 〈ψ|P00|ψ〉 is the
probability of outcome 00 for the complete measurement, where P00 = |00〉〈00|. For
the incomplete measurement, p(0) = 〈ψ|Π0|ψ〉 is the probability of outcome 0, where
Π0 = P00 + P11. So p(0) = 〈ψ|P00|ψ〉 + 〈ψ|P11|ψ〉.

§1.14 Extended Born rule

Let S1, S2 be quantum systems with state spaces V,W with dimensions m,n, and we
consider the composite system S1S2. Let {|ei〉} be a complete orthonormal basis of V ,
and let {|fj〉} be a complete orthonormal basis of W . Suppose the composite system
is in an initial state |ψ〉 =

∑
aij |ei〉 |fj〉. Suppose now that we want to measure |ψ〉

in the basis {|ei〉}; this amounts to an incomplete measurement with subspaces Ei =
span {|ei〉 ⊗ |φ〉 : |φ〉 ∈ W} for 1 ≤ i ≤ m. The outcomes of such a measurement are
{1, . . . ,m}, and the Ei are mutually orthogonal. The probability of a given outcome is
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p(k) = 〈ψ|Pk ⊗ I|ψ〉, where Pk = |ek〉〈ek|. Hence,

p(k) =
(∑

a⋆i′j′
〈
e′
i

∣∣ 〈f ′
j

∣∣∣)(|ek〉〈ek| ⊗ I)
(∑

aij |ei〉 |fj〉
)

=
n∑
j=1

a⋆kjakj

If the outcome is k, then the post-measurement state is given by

|ψafter〉 = (Pk ⊗ I) |ψ〉
p(k)

=
∑
j akj |ek〉 |fj〉√∑

j |akj |2

Using partial inner products, one can show that |ψafter〉 is normalised. These rules are
referred to as the extended Born rule.

Consider a quantum system S with state space V . A measurement relative to any basis
C can be performed by first performing a unitary operator, then performing a measure-
ment in a fixed basis B. Let B = {|ei〉}, and C = {|e′

i〉}. Let U be a unitary operator
such that |e′

i〉 = U |ei〉. Then, U † = U−1 has the property that U−1 |e′
i〉 = |ei〉. Sup-

pose we have a state |ψ〉 ∈ V . Let |ψ〉 =
∑
ci |e′

i〉. Applying U−1 to |ψ〉, we obtain
U−1 |ψ〉 =

∑
ci |ei〉 by linearity. We can then measure |ψ′〉 = U−1 |ψ〉 in the basis B. By

the Born rule, p(i) = 〈ψ′|Pi|ψ′〉 = 〈ψ|UPiU † |ψ〉 where Pi = |ei〉〈ei|, as we are perform-
ing a complete projective measurement. If the outcome is i, then the post-measurement
state is

∣∣ψ′
after

〉
= Pi|ψ′〉

p(i) .

§1.15 Standard measurement on multi-qubit systems

Consider a system of n qubits. The state space is (C2)⊗n. The computational basis or
standard basis isB = {|i1 . . . in〉 | ij ∈ {0, 1}}. The labels of the elements of the standard
basis are labelled by bit strings of length n.

Suppose we are measuring a subset of k qubits of the n-qubit system. Let n = 3, and
let

|ψ〉 = i

2
|000〉 + 1 + i

2
√

2
|001〉 − 1

2
|101〉 + 3

10
|110〉 − 2i

5
|111〉

The standardmeasurement of any of the three qubits will always have the outcome zero
or one. Supposewe perform a standardmeasurement on the first qubit. By the extended
Born rule, we obtain

p(1)(1) = 〈ψ|P1 ⊗ I ⊗ I |ψ〉 = 〈ψ| (|1〉〈1| ⊗ I ⊗ I) |ψ〉 = 1
4

+ 9
100

+ 4
25

= 1
2

If we measure the outcome 1, the post-measurement state is |ψafter〉 = (P1⊗I⊗I)|ψ〉√
p(1)(1)

.
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§1.16 Reliably distinguishing states

Note that the measurement postulate implies that states with guaranteed (with probab-
ility 1) different measurement outcomes always lie in mutually orthogonal subspaces.
We say that two states are reliably distinguishable if there exists a measurement which
outputs two distinct outcomes with probability 1 when applied to the two states. There-
fore, two states |ψ〉 , |φ〉 are reliably distinguishable if and only if they are orthogonal, so
〈ψ|φ〉 = 0.

Let |ψ〉 and |φ〉 be orthogonal. Let B = {|ψ〉 , |f1〉 , . . . , |fm−1〉} be a complete orthonor-
mal basis for V . Then 〈ψ|fj〉 = 0 and 〈fj |fk〉 = δjk. Measuring |ψ〉 in this basis,
p(1) = 〈ψ|P1 |ψ〉 where P1 = |ψ〉〈ψ|, so the probability is 1. Measuring |φ〉 in this basis,
p(1) = 〈ψ|φ〉 〈φ|ψ〉 = 0. This is an example of a measurement which can reliably distin-
guish |ψ〉 and |φ〉.

Vectors |v〉 = |ψ〉 and |v′〉 = eiθ |ψ〉 are not distinguishable. For any measurement, the
probability of obtaining a particular outcome whenmeasuring |v〉 is always the same as
the probability when measuring |v′〉.

13



§2 Quantum states as information carriers

§2.1 Using higher Hilbert spaces

Quantum information is encoded in the states of a quantum system. Classical inform-
ation is encoded in states chosen from an orthonormal set, since all distinct classical
messages can be distinguished. Given a quantum system S and a quantum state |ψ〉, we
can perform this sequence of operations.

• (ancilla) Consider an auxiliary system A in a fixed state |A〉 ∈ VA. The composite
system SA has vector space VS ⊗ VA. The initial joint state is |ψ〉 |A〉. This results
in an embedding of quantum information in a higher dimensional space.

• (unitary) Consider the action of a unitary operator U on SA (or on S), modelling
the time evolution of the quantum system.

• (measure) We can perform measurements on SA (or on S). The post-
measurement state of S is retained, and the auxiliary system A is discarded.

This process is sometimes known as ‘going to the church of the higher Hilbert space’.
The presence of the ancilla allows for entanglement with other quantum systems.

§2.2 No-cloning theorem

Classically, information can be easily copied by measuring all relevant information and
reproducing it. Quantum copying involves three systems:

• a system A containing some quantum information to be copied;

• a system B with VB ' VA initially in some fixed state |0〉 where the information is
to be copied;

• a systemM which represents any physical machinery in some ‘ready’ state |M0〉
required for performing the copy.

The initial state of this composite system ABM is |ψ〉 |0〉 |M0〉. Note that the |ψ〉 and
|0〉 |M0〉 are uncorrelated in this state, as we are using the tensor product to combine
them. Suppose that the cloning process is performed using some unitary operator U , so
U |ψA〉 |0〉 |M0〉 = |ψA〉 |ψB〉 |Mψ〉. Note |ψA〉 = |ψ〉A = |ψ〉. This cloning process may be
required to work either for all states of A, or for some subset of A.

Theorem 2.1
Let S be any set of states of the system A that contains at least one pair of distincta
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non-orthogonal states. Then ∄ any unitary operator U that clones all states in S.
a〈ξ|ψ〉 6= 1 iff ξ, ψ distinct states.

Proof. Let |ξ〉 , |η〉 be distinct non-orthogonal states in S , so 〈ξ|η〉 6= 0. Suppose such
a unitary operator U exists. Then, we must have

U |ξA〉 |0B〉 |M0〉 = |ξA〉 |ξB〉 |Mξ〉 ; U |ηA〉 |0B〉 |M0〉 = |ηA〉 |ηB〉 |Mη〉

Unitary operators preserve inner products. Hence,

〈ξA|ηA〉 〈0B|0B〉 〈M0|M0〉 = 〈ξA|ηA〉 〈ξB|ηB〉 〈Mξ|Mη〉

Hence, 〈ξ|η〉 = (〈ξ|η〉)2 〈Mξ|Mη〉a. By taking the absolute value, |〈ξ|η〉| =
|〈ξ|η〉|2|〈Mξ|Mη〉|. Since ξ 6= η, wemust have 0 < |〈ξ|η〉| < 1, and 0 ≤ |〈Mξ|Mη〉| ≤ 1.
Therefore, 1 = |〈ξ|η〉||〈Mξ|Mη〉| < 1, which is a contradiction.

aAs we assume states are normalised so 〈M0|M0〉 = 〈0B |0B〉 = 1.

If quantum cloning were possible, superluminal (indeed, instantaneous) communica-
tionwould also be possible. Supposewehave a state

∣∣∣ψ+
AB

〉
= 1√

2(|0〉A |0〉B + |1〉A |1〉B) ∈
C2 ⊗ C2. Let A,B be the entangled parts of this quantum state, and suppose that we
send qubit A to Alice and B to Bob, far apart from each other.

If we want to send the bit ‘yes’ from Alice to Bob, we measure the qubit A in the basis
{|0〉 , |1〉}, which gives outcomes 0, 1 with probability 1

2 . If the outcome is 0, the final
state of B is |0〉, and if the outcome is 1, the final state of B is |1〉. If we want to send
‘no’, we instead measure A in the basis {|+〉 , |−〉}, which gives the outcomes +,− with
probability 1

2 . Similarly, the final state of B is |+〉 or |−〉.

We claim that these ‘yes’ (|0〉 , |1〉) and ‘no’ (|+〉 , |−〉) preparations of qubit B are indis-
tinguishable by Bob with any local action on the qubit. That is, they each give exactly
the same probability distribution of outcomes of any measurement so no superluminal
communication yet. In fact, the distribution matches the prior distribution before qubit
Awas measured.

Let Πi be the projection operator for outcome i on qubit B. Suppose that ‘yes’ was sent.
Then,

pyes(i) = 1
2

〈0|Πi|0〉 + 1
2

〈1|Πi|1〉 = 1
2

Tr [Πi(|0〉〈0| + |1〉〈1|)] = 1
2

Tr Πi

In the ‘no’ case,

pno(i) = 1
2

〈+|Πi|+〉 + 1
2

〈−|Πi|−〉 = 1
2

Tr [Πi(|+〉〈+| + |−〉〈−|)] = 1
2

Tr Πi

These probability distributions match.
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Suppose that cloning were possible. We clone the qubit B multiple times after the mes-
sage was sent, to produce one of the states |0〉 . . . |0〉 , |1〉 . . . |1〉 , |+〉 . . . |+〉 , |−〉 . . . |−〉.
We now measure each qubit in the basis |0〉 , |1〉 separately. If the ‘yes’ message was
sent, all measurements will result in 0 or 1. If ‘no’ was sent, it is possible that two meas-
urements would differ. In expectation, half of the measurements would result in the
outcome 0 and half would result in the outcome 1. Therefore, the ‘yes’ and ‘no’ errors
can be distinguished with probability of error 2−N+1 if we make N copies of B.

§2.3 Distinguishing non-orthogonal states

Suppose you knowa state |ψ〉 has state |α0〉 or |α1〉with probability 1
2 , where 〈α0|α1〉 6= 0.

Since the states are non-orthogonal, we cannot perfectly distinguish the states, but must
allow some error rate. The simplest possibility is to not make a measurement and guess
randomly; in which case, the guess is correct with probability 1

2 .

Suppose we append an auxiliary system |A〉 to |αi〉. Note that 〈A| 〈αi|αi〉 |A〉 = 〈αi|αi〉
as |A〉 is normalised. If we apply a unitary operator U to |αi〉 then perform a project-
ive measurement in the basis {Π0,Π1}, our action corresponds to simply performing a
measurement Π′

0 = U †Π0U or Π′
1 = U †Π1U , which leads to the same probabilities of

outcomes. Indeed,

p(i) = 〈Uξ|Πi|Uξ〉 = 〈ξ|U †ΠiU |ξ〉 = 〈ξ|Π′
i|ξ〉

Therefore, in this particular problem, we gain no benefit frommoving to a larger Hilbert
space or applying unitary operators.

We now describe the state estimation or state discrimination process. Wewill consider
a two-outcome measurement {Π0,Π1}, where Π0 + Π1 = I . The average success prob-
ability is

pS(Π0,Π1) = 1
2
P (0 | |ψ〉 = |α0〉) + 1

2
P (1 | |ψ〉 = |α1〉)

= 1
2

〈α0|Π0|α0〉 + 1
2

〈α1| Π1
I−Π0

|α1〉

= 1
2

+ 1
2

Tr [Π0(|α0〉〈α0| − |α1〉〈α1|)]

as Tr(A |ψ〉〈ψ|) = 〈α|A|α〉. The optimal choice of measurement maximises the aver-
age success probability pS . Note that ∆ = |α0〉〈α0| − |α1〉〈α1| is self-adjoint, and we
can write pS = 1

2 + 1
2 Tr(Π0∆). Therefore, the eigenvalues of ∆ are real, and the eigen-

vectors form an orthonormal basis. For a state |β〉 orthogonal to both |α0〉 and |α1〉, we
have ∆ |β〉 = 0. Therefore, ∆ acts nontrivially only in the vector space spanned by |α0〉
and |α1〉, and hence has at most two nonzero eigenvalues, and its eigenvectors lie in
span {|α0〉 , |α1〉}.
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Now,Tr ∆ = 01 so the eigenvalues are δ and−δ for some δ ∈ R. Let |p〉 be the eigenvector
for δ, and |m〉 be the eigenvector for −δ, so 〈p|m〉 = 0. We can write ∆ in its spectral
decomposition, giving ∆ = δ |p〉〈p| − δ |m〉〈m|.

Let
∣∣∣α⊥

0

〉
∈ span {|α0〉 , |α1〉} be a normalised vector such that

〈
α⊥

0

∣∣∣α0
〉

= 0. Then,{
|α0〉 ,

∣∣∣α⊥
0

〉}
is an orthonormal basis. Hence, we can write |α1〉 = c0 |α0〉 + c1

∣∣∣α⊥
0

〉
.

In this basis,

∆ =
(

1 0
0 0

)
+
(

−|c0|2 −c0c
⋆
1

−c⋆0c1 −|c1|2

)
=
(

1 − |c0|2 −c0c
⋆
1

−c⋆0c1 −|c1|2

)
=
(

|c1|2 −c0c
⋆
1

−c⋆0c1 −|c1|2

)

which has eigenvalues δ = |c1|,−δ = −|c1|. Since |c0| = |〈α0|α1〉| = cos θ where θ ≥ 0,
we have δ = sin θ. Then,

pS(Π0,Π1) = 1
2

+ 1
2

Tr(Π0∆)

= 1
2

+ 1
2

Tr(Π0[sin θ |p〉〈p| − sin θ |m〉〈m|])

= 1
2

+ sin θ
2

[ 〈p|Π0|p〉 − 〈m|Π0|m〉]

Note that for any |φ〉, we have 0 ≤ 〈φ|Π|φ〉 ≤ 1, so themeasurement is maximisedwhen
〈p|Π0|p〉 = 1 and 〈m|Π0|m〉 = 0. We therefore define Π0 = |p〉〈p|. Then, the optimal
average success probability is

p⋆S = 1
2

+ sin θ
2

Theorem 2.2 (Holevo–Helstrom theorem for pure states)
Let |α0〉 , |α1〉 be equally likely states, with |〈α0|α1〉| = cos θ, θ ≥ 0. Then, the prob-
ability pS of correctly identifying the state by any quantum measurement satisfies

pS ≤ 1
2

+ sin θ
2

and this bound can be attained.

In the case of orthogonal states, the theorem implies that pS ≤ 1 and the bound can be
attained, which was shown before.

§2.4 No-signalling principle

Supposewe have a possibly entangled state |φAB〉 ∈ VA⊗VB shared between two agents
Alice (A) and Bob (B). Suppose we perform a complete projective measurement on
1Tr ∆ = 〈α0|α0〉 − 〈α1|α1〉
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|φA〉. By the extended Born rule, each measurement outcome will lead to an instant-
aneous change of |φB〉. If this change in state could be detected by measuring |φB〉,
instantaneous communication between A and B would be possible.

Consider
∣∣∣φ+
AB

〉
= 1√

2(|00〉 + |11〉). Suppose qubit A is measured in the standard basis
{|0〉 , |1〉}.

outcome probability post-measurement state final state of B
0 1

2 |00〉 |0〉
1 1

2 |11〉 |1〉

Suppose qubit B is subsequently measured in {|b0〉 , |b1〉}. If B is in the state |0〉, we
can write |0〉 = c0 |b0〉 + c1 |b1〉, and p|0〉(i) = |ci|2 = |〈bi|0〉|2. If B is in the state |1〉, we
write |1〉 = d0 |b0〉 + d1 |b1〉, and p|1〉(i) = |di|2 = |〈bi|1〉|2. Therefore, p(i) = 1

2 |〈bi|0〉|2 +
1
2 |〈bi|1〉|2 = 1

2 . The two outcomes for this measurement are equally likely, regardless of
the choice of complete orthonormal basis {|b0〉 , |b1〉}.

Suppose instead A is not measured, but we perform the same measurement on B. The
initial state is

∣∣∣φ+
AB

〉
, so by the extendedBorn rule, p(i) =

〈
φ+
AB

∣∣∣(IA ⊗ |bi〉〈bi|)
∣∣∣φ+
AB

〉
= 1

2 .
We can therefore not detect through measuring B whether a measurement was per-
formed at A. This is the no-signalling principle.

We now prove the more general case. Let |φAB〉 ∈ VA ⊗ VB be an arbitrary possibly
entangled state.

SupposewemeasureB in a complete orthonormal basis {|b〉}dim VB
b=1 , which is a complete

projective measurement on B. Let {|a〉}dim VA
a=1 be a complete orthonormal basis for VA.

Then, expanding |φAB〉, in this basis, we can write |φAB〉 =
∑
a,b cab |a〉 |b〉. We obtain

outcome b with probability p(b) = 〈φAB|(IA ⊗ Pb)|φAB〉 =
∑dim VA
a=1 |cab|2. The post-

measurement state is |φ′
AB〉.

Suppose that we first measure A in a complete orthonormal basis {|a〉}dim VA
a=1 , and then

perform the measurement {|b〉}dim VB
b=1 on B. The outcome of the first measurement is

a with probability p(a) = 〈φAB|(Pa ⊗ IB)|φAB〉 =
∑dim VB
b=1 |cab|2. We denote the post-

measurement state of the joint system by |φ′′
AB〉 = (Pa⊗IB)|φAB〉√

p(a)
. Then, the outcome of

the second measurement is bwith probability

p(b | a) =
〈
φ′′
AB

∣∣(IA ⊗ Pb)
∣∣φ′′
AB

〉
= 1
p(a)

〈φAB|(Pa ⊗ IB)(IA ⊗ Pb)
As projections: (Pa⊗PB)

(Pa ⊗ IB)|φAB〉

= 1
p(a)

〈φAB|(Pa ⊗ Pb)|φAB〉

p(a, b) = p(a)p(b | a) = 〈φAB|(Pa ⊗ Pb)|φAB〉 = |cab|2
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Hence p(b) =
∑dim VA
a=1 |cab|2, which is exactly the distribution we obtained when no

measurement on Awas performed. This proves the no-signalling principle.

§2.5 The Bell basis

Let C2 ⊗ C2 model a quantum system representing the spins of two electrons. Con-
sider

∣∣∣φ+
AB

〉
= 1

2(|00〉 + |11〉) ∈ C2 ⊗ C2. This is a maximally entangled state; we have
information about the whole system, but no information about the individual states.∣∣∣φ±

AB

〉
= 1√

2
(|00〉 ± |11〉);

∣∣∣ψ±
AB

〉
= 1√

2
(|01〉 ± |10〉)

{∣∣∣φ±
AB

〉
,
∣∣∣ψ±
AB

〉}
forms a complete orthonormal basis of C2 ⊗C2. This is called the Bell

basis. The basis vectors are sometimes known as EPR states, after Einstein, Podolsky,
and Rosen.

One bit of classical information can be encoded in a single qubit, and two bits can be
encoded in a pair of qubits in the Bell basis. The Bell states have a parity 0 or 1, repres-
enting parallel {|φ±〉} or antiparallel {|ψ±〉} spins. The states also have a phase, which
can be positive

{∣∣φ+〉 , ∣∣ψ+〉} or negative {|φ−〉 , |ψ−〉}. For example, we can encode the
classical message 01 using the state |φ−〉.

We can perform a complete projective measurement on both qubits in the Bell basis to
recover the encoded information with certainty. For instance, P00 =

∣∣φ+〉〈φ+∣∣. If we
prepare a pair of electrons |φ〉 in the state |φ−〉 for example, we obtain p(00) = p(10) =
p(11) = 0 and p(01) = 1.

Note (A⊗ I)
∣∣φ+〉 = (I ⊗A⊺)

∣∣φ+〉.
§2.6 Superdense coding

SupposeAlicewants to send a classicalmessage to Bob. Two bits of classical information
can be sent reliably via a single qubit, provided that Alice and Bob share an entangled
state, using superdense coding or quantum dense coding. Let

X = σx; Z = σz; Y = iσy =
(

0 1
−1 0

)

One can check that the Bell basis vectors satisfy∣∣∣φ+
〉

= (I ⊗ I)
∣∣∣φ+

〉
= (I ⊗ I)

∣∣∣φ+
〉

∣∣φ−〉 = (Z ⊗ I)
∣∣∣φ+

〉
= (I ⊗ Z)

∣∣∣φ+
〉

∣∣∣ψ+
〉

= (X ⊗ I)
∣∣∣φ+

〉
= (I ⊗X)

∣∣∣φ+
〉
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∣∣ψ−〉 = (Y ⊗ I)
∣∣∣φ+

〉
= −(I ⊗ Y )

∣∣∣φ+
〉

Suppose we have shared the entangled Bell state
∣∣∣φ+
AB

〉
between Alice and Bob. The

superdense coding protocol is

Alice’s message local action on A final state of AB
00 I

∣∣φ+〉
01 Z |φ−〉
10 X

∣∣ψ+〉
11 Y |ψ−〉

Then, Alice sends qubit A to Bob, so Bob has the entire state AB. Bob performs a Bell
measurement, which distinguishes between the four Bell states, thus recovering Alice’s
message. Since the state is maximally entangled, an eavesdropper who may intercept
Alice’s transmission cannot recover any part of the message.

§2.7 Quantum gates

A quantum gate is given by a unitary operator acting on some qubits. Such gates have
matrix representations in the computational basis.

1. The Hadamard gate is

H = 1√
2

(
1 1
1 −1

)
One can show that

H |0〉 = |+〉 ; H |1〉 = |−〉 ; H |+〉 = |0〉 ; H |−〉 = |1〉

Note that H⊺ = H† = H and H2 = I . As an orthogonal transformation in R2, it
acts as a reflection by an angle of π8 to the positive x axis. This gate is drawn

H

In general, by linearity we obtain

a |0〉 + b |1〉 H a |+〉 + b |−〉

2. The X,Z gates are given by

X |k〉 = |k ⊕ 1〉 ; Z |k〉 = (−1)k |k〉

where ⊕ denotes addition modulo 2. They X,Z, Y gates are drawn

X ; Z ; X Z
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3. The phase gate is

Pθ =
(

1 0
0 eiθ

)
Note that Z = Pπ.

4. The controlled-X gate, also called a CNOT gate, is

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =
(
I 0
0 X

)

Note that CX |i〉 |j〉 = |i〉 |i⊕ j〉. The first qubit is called the control qubit, and the
second is called the target qubit. If i = 0, there is no action on the second qubit.
If i = 1, X is performed on the second qubit. In general, CX |0〉 |ψ〉 = |0〉 |ψ〉, and
CX |1〉 |ψ〉 = |1〉 (X |ψ〉). The circuit diagram is as follows.

|i〉 • |i〉

|j〉 |i⊕ j〉
One can show that

•

= H • H

H H

5. The controlled-Z gate, also called a CZ gate, is

CZ =
(
I 0
0 Z

)

So CZ |0〉 |ψ〉 = |0〉 |ψ〉 and CZ |1〉 |ψ〉 = |1〉 (Z |ψ〉). CZ is symmetric in its action
on the two qubits; for example, CZ12 |0〉 |1〉 = CZ21 |0〉 |1〉. This gate is drawn

•

Z

or •

•

§2.8 Quantum teleportation

Suppose Alice and Bob share the Bell state
∣∣φ+〉

AB , and that Alice wants to send the
state of qubit |ψ〉C to Bob, but only classical communication between them is possible.
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It is possible to transfer the information about the state of |ψ〉C without physically trans-
ferring qubit C to Bob. This state transfer can be accomplished in such a way that is
unaffected by any physical process in the space between Alice and Bob, since it relies
only on classical communication.

The initial state of CAB is |Ψ〉 = |ψ〉C ⊗
∣∣φ+〉

AB , assuming |ψ〉C is uncorrelated with∣∣φ+〉
AB . Let |ψ〉C = a |0〉C + b |1〉C , so

|Ψ〉 = |ψ〉C ⊗
∣∣∣φ+

〉
AB

= 1√
2

[a |000〉 + a |011〉 + b |100〉 + b |111〉]

Alice sends C and A through a CX gate. Now,

|Ψ〉 = |φ1〉 = 1√
2

[a |000〉 + a |011〉 + b |110〉 + b |101〉]

She now sends C through a Hadamard gate.

|Ψ〉 = |φ2〉 = 1√
2

[a |+00〉 + a |+11〉 + b |−10〉 + b |−01〉]

= 1
2
[
|00〉 |ψ〉 + |01〉 (X |ψ〉) + |10〉 (Z |ψ〉) + |11〉 (−Y |ψ〉)

]
Alice now measures CA in the computational basis of C2 ⊗ C2. The probability of each
outcome is 1

4 , irrespective of the values of a and b and hence of |ψ〉. She then sends the
result of her measurement to Bob. If Alice measures outcome ij, B is in state XjZi |ψ〉.
Then, Bob can act onB usingZiXj , asX andZ are involutive, giving |ψ〉 as desired. This
process can be represented with the following diagram, where double-struck wires are
classical, and the meter symbol denotes a measurement of the quantum state.

|ψ〉C • H  •

∣∣φ+〉
A

 •

∣∣φ+〉
B X Z |ψ〉

Note that after the measurement of CA, the entanglement between CA andB is broken.
No-cloning is not violated, as the original state |ψ〉C is destroyed.

Note that the first steps of this process including Alice’s measurement correspond to
performing a Bell measurement on CA. This is because the action of CXCA then HC

corresponds to a rotation of the Bell basis to the standard basis.
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§3 Quantum cryptography

§3.1 One-time pads

We can use quantum information theory to securely transmit messages between agents
Alice and Bob, who may be in distant locations, without the possibility that an eaves-
dropper Eve can recover the message that was sent.

We will assume that Alice and Bob have an authenticated classical channel through
which they can send classical information; Alice and Bob can verify that any particu-
lar message on the channel came from a particular sender. We also assume that Eve
cannot block the channel or modify any messages transmitted, but she can monitor the
channel freely. Hence, Alice and Bob can receive messages from each other without
error.

In the classical setting, there exists a provably secure classical scheme for private com-
munications, called the one-time pad. This requires that Alice and Bob share a private
key K, which is a binary string. K must have been created beforehand, and must be
chosen uniformly at random from the set of binary strings of the same length as the
messageM . SupposeM,K ∈ {0, 1}n.

The protocol is as follows. First, Alice computes the encrypted message C = M ⊕ K.
She then sends C to Bob through the classical channel. Bob can then compute C ⊕K =
M ⊕ K ⊕ K = M to obtain the message that was sent by Alice. Eve cannot learn any
information about the message (apart from its length), as she has no knowledge of K.
In general, the probability that a particularK was chosen is 2−n. This scheme cannot be
broken.

Suppose that Alice and Bob use the same keyK to send two messagesM1,M2. Eve can
obtainM1 ⊕K andM2 ⊕K, and can therefore compute (M1 ⊕K)⊕(M2 ⊕K) = M1 ⊕M2,
which gives some information about the messages that were sent. Any key must only
be used once, so the one-time pad protocol is inefficient. To solve this problem, we will
construct methods for distributing keys, using techniques from quantum information
theory.

§3.2 The BB84 protocol

Quantum key distribution allows Alice and Bob to generate a private key without need-
ing to physically meet. This key can then be used to send messages over the one-time
pad protocol. In addition to a classical channel, we assume that Alice and Bob also have
access to a quantum channel through which they can send qubits. We will show that
Eve cannot gain information about the key that Alice and Bob generate without being
detected.
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Consider the bases B0 = {|0〉 , |1〉},B1 = {|+〉 , |−〉}. These are examples of mutually
unbiased bases; a pair of bases such that if any basis vector is measured relative to the
other basis, all outcomes are equally likely. For example, measuring |+〉 relative to B0
gives probability 1

2 for outcomes 0 and 1.

First, Alice generates two m-bit strings x = x1 . . . xm ∈ {0, 1}m, y = y1 . . . ym ∈ {0, 1}m
uniformly at random. She then prepares them-qubit state |ψxy〉 = |ψx1y1〉⊗· · ·⊗|ψxmym〉
where

|ψxiyi〉 =


|0〉 xi = 0; yi = 0
|1〉 xi = 1; yi = 0
|+〉 xi = 0; yi = 1
|−〉 xi = 1; yi = 1

Alice sends the qubits |ψxy〉 to Bob with m uses of the quantum channel. The qubits
received are not necessarily in the state |ψxy〉 due to noise or malicious manipulation of
the channel, but for now assume they are.

Bob then generates an m-bit string y′ = y′
1 . . . y

′
m ∈ {0, 1}m uniformly at random. If

y′
i = 0, he measures the ith qubit in the basis B0 = {|0〉 , |1〉}. If y′

i = 1, he acts on the ith
qubit by the Hadamard gate and then measures in B0. Equivalently, he measures the
ith qubit in the basis B1 = {|+〉 , |−〉}. Let the sequence of outcomes be x′ = x′

1 . . . x
′
m ∈

{0, 1}m.

If y′
i = yi, we have x′

i = xi else xi and x′
i are uncorrelated.

Now, Alice and Bob publically compare their values of y and y′ over the classical channel,
and discard all xi and x′

i for which yi 6= y′
i. The remaining xi and x′

i match, given that
Bob receives |ψxy〉 exactly, and this forms the shared private key x̃ = x̃′. The average
length of x̃ is m

2 .

In the case m = 8, suppose x = 01110100 and y = 11010001. Alice prepares |ψxy〉
and sends the qubits to Bob. Suppose that Bob receives |ψxy〉 exactly, and he generates
y′ = 01110110. Bob measures qubit 1 in the basis B0, but the qubit is in state |+〉, so
he obtains both outcomes for x′

1 with equal probability. He measures qubit 2 in the
basis B1, and the qubit is in state |−〉, so after applying H and measuring, he obtains
the correct outcome x′

2 = 1 with probability 1. After discarding mismatched yi, the
obtained private key is x̃ = 110.

In the general case, however, theremay be noise ormalicious activity on the channel. We
therefore include the further step of information reconciliation at the end of the BB84
protocol. Alice and Bob want to estimate the bit error rate, which is the proportion of
bits in x̃ and x̃′ that differ. They can publicly compare a random sample of their bits,
and discard the bits used in the test. They assume that the bit error rate in the sample
is approximately the same as the bit error rate of x̃ and x̃′.

Suppose that Alice and Bob have estimated the bit error rate to be 1
7 , and now have

strings a, b of length 7. They can use classical error correcting code techniques to fix any
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remaining errors. They publicly agree to act on a, b by a matrix

H̃ =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


which is the check matrix of a Hamming code. Alice computes the syndrome for a,
given by sA = (sA1 , sA2 , sA3 )⊺ = H̃a⊺, and sends this to Bob on the public channel. Bob
computes the syndrome sB for b, and calculates s = sB −sA. There is a unique bit string
v with at most one nonzero entry such that H̃v⊺ = s; he can therefore recover a.

The estimation of the bit error rate and the transmission of the syndrome can reveal
some information on the public channel. Alice and Bob want to estimate the maximum
amount of information that an eavesdropper could gain about the remaining bits, using
privacy amplification. This depends on the choice of action that Eve takes.

As an example, suppose a⋆ = (a1, a2, a3) ∈ {0, 1}3, and suppose Eve knows at most one
bit of this string. Let c = (a1 ⊕a3, a2 ⊕a3). We claim that Eve has no knowledge about c.
Indeed, we can explicitly enumerate all possibilities of a⋆ and the corresponding values
of c, and show that Eve’s knowledge about any of the bits of a⋆ does not change the
distribution of c.

One strategy for Eve, called the intercept and resend strategy, is to intercept the qubits as
they are transferred to Bob, measure them, and retransmit the post-measurement state.
The best possible measurement she can perform is in the Breidbart basis {|α0〉 , |α1〉}
where

|α0〉 = cos π
8

|0〉 − sin π
8

|1〉 ; |α1〉 = sin π
8

|0〉 + cos π
8

|1〉

Note that
|〈α0|0〉|2 = |〈α0|+〉|2 = cos2 π

8
; |〈α1|1〉|2 = |〈α1|−〉|2 = cos2 π

8
The |αi〉 provide the best possible simultaneous approximations of |0〉 , |+〉 and |1〉 , |−〉.
Suppose y′

i = yi, and suppose Eve intercepts the ith qubit and measures it in the
Breidbart basis. Her outcomes are 0 or 1, and she learns the correct value of xi with
probability cos2 π

8 ≈ 0.85. If she measures 0, she transmits |α0〉 to Bob, and if she
measures 1, she transmits |α1〉 to Bob.

The probability that Bob makes an incorrect inference of the value of the ith bit after
this manipulation is 1

4 , regardless of the state of the qubit transmitted by Alice. Suppose
|ψxiyi〉 = |0〉, so xi = 0, yi = 0. Then,

P
(
x′
i 6= xi

)
= P (B measures 1 | A sent |0〉)
= P (E sent |α0〉 | A sent |0〉)P (B measures 1 | E sent |α0〉)
+ P (E sent |α1〉 | A sent |0〉)P (B measures 1 | E sent |α1〉)
= |〈α0|0〉|2|〈α0|1〉|2 + |〈α1|0〉|2|〈α1|1〉|2

= 1
4

25



§4 Quantum computation

§4.1 Classical computation

A computational task takes an input bit string and produces an output bit string.

A decision problem is a computational task that produces an output of length 1. Let
B = B1 = {0, 1} and denote Bn = {0, 1}n. Define B⋆ =

⋃
n≥1Bn. A language is a

subset L ⊆ B⋆. A decision problem corresponds to the problem of checking whether a
word w ∈ B⋆ lies in a language L. For example, the set of primes, expressed in binary,
forms a language P ⊆ B⋆, and there is a corresponding decision problem to check if a
given binary string represents a prime.

More generally, the output of a computational task can be of any length. For example,
the task FACTOR(x) takes the input x and produces a bit string containing a factor of x,
or 1 if x is prime.

There are various models of computation, but we restrict to the circuit or gate array
model. In this model, we have an input x = b1 . . . bn ∈ Bn, and extend it with some
trailing zeroes to add scratch space to perform computations. We then perform some
computational steps, an application of designated Boolean gates f : Bn → Bm on pre-
assigned bits. For each n, we have a circuit Cn, which is a prescribed sequence of com-
putational steps that performs a given task for all inputs of size n. The output to the
computation is a designated subsequence of the extended bit string.

Suppose that, in addition to extending the input bit string with zeroes, we also add
k random bits, which have values set to 0 or 1 uniformly at random. The output of
the computation will now be probabilistic. The probability that the output is y is a2−k,
where a is the number of bit strings r that produce the desired outcome. We typically
require that the output is correct with some prescribed probability.

§4.2 Classical complexity

The time complexity is a measure of the amount of computational steps required for a
particular algorithm for an input of size n. In the circuit model, we define T (n) to be
the total number of gates in the circuit Cn, known as the size of the circuit or runtime
of the algorithm.

For a positive function T (n), we write T (n) = O(f(n)) if there exist positive constants
c, n0 such that for all n > n0, we have T (n) ≤ cf(n). If T (n) = O(nk) for some k > 0, we
say that T (n) is O(poly(n)), and the corresponding algorithm is a poly-time algorithm.
The class of languages for which the membership problem has a classical poly-time al-
gorithm is called P. The class of languages for which the membership problem has a
randomised classical poly-time algorithm that gives the correct answer with probability
at least 2

3 is called BPP, short for bounded-error probabilistic poly-time. The problem
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FACTOR(M,N) which determines if there is a nontrivial factor of N that is at mostM
does not lie in BPP. The best known runtime is T (n) = exp

(
O
(
n

1
3 (logn)

2
3
))

.

A black box promise problem is a computational task where the input is a black box
or oracle which can compute a Boolean function f : Bm → Bn, and there is an a priori
promise on f restricting the possible values of f . For example, the black box promise
problem for constant vs. balanced functions takes a function f : Bn → B such that f is
constant or balanced, in which case f is equal to zero for exactly half of the 2n possible
inputs.

The corresponding complexity is called query complexity, which counts the amount of
times we need to query the black box. We typically wish to minimise the query com-
plexity.

§4.3 Quantum circuits

In a quantum circuit, we have qubit inputs |b1〉 . . . |bn〉 |0〉 . . . |0〉 analogously to the clas-
sical case. The input size n is the number of qubits. The addition of randomness to
classical computation needs no analogue in the quantum case, since randomness is ob-
tained by measurement. For instance, if we have a qubit |0〉, we can generate a uniform
Bernoulli random variable by sending the qubit through a Hadamard gate and then
measuring in the computational basis.

The computational steps are gates or unitary operators, which act on a prescribed set
of qubits, constituting a quantum circuit Cn. The output is obtained by performing a
measurement on a prescribed set of qubits. One can show that any circuit involving
arbitrarily many measurements is equivalent to a circuit that only performs a single
measurement at the end of the computation.

§4.4 Quantum oracles

Note that all quantum gates are invertible, as they are represented with unitary operat-
ors, but not all classical gates are invertible. Any f : Bm → Bn can be expressed in an
equivalent invertible form f̃ : Bm+n → Bm+n by defining f̃(b, c) = (b, c ⊕ f(b)). If we
can compute f we can also compute f̃ , and conversely given f̃ we can find f(b) = f̃(b, 0).
This is self-inverse.

f̃(f̃(b, c)) = f̃(b, c⊕ f(b)) = (b, c⊕ f(b) ⊕ f(b)) = (b, c)

A quantum oracle for a function f : Bm → Bn is the quantum gate Uf acting on m + n
qubits such that Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for |x〉 , |y〉 states in the computational basis.
In other words, its action on the computational basis is f̃ . We say that |x〉 is the input
register and |y〉 is the output register.
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One can show that Uf is always a unitary operator. We can show this directly by consid-
ering Uf |x′〉 |y′〉 = |x′〉 |y′ ⊕ f(x′)〉, and we can take the inner product with Uf |x〉 |y〉 =
|x〉 |y ⊕ f(x)〉. An easier way to show this is to consider f̃ : Bk → Bk as a permutation
onBk wherem+n = k. We canwrite Uf |x〉 |y〉 = Uf |i1 . . . ik〉 =

∣∣∣f̃(i1 . . . ik)
〉
. Since f̃ is

a permutation, Uf is therefore represented by a permutation matrix, which has a single
1 in each row and column. All permutation matrices are unitary.

In contrast to a classical oracle, a quantum oracle can act on a superposition of
input registers. Let f : Bm → Bn, and consider the equal superposition state
|φm〉 = 1√

2m
∑
x∈Bm |x〉. We can find

Uf |φm〉 |y〉 = Uf

 1√
2m

∑
x∈Bm

|x〉

 |y〉 = 1√
2m

∑
x∈Bm

Uf |x〉 |y〉 = |ψf 〉

In a single use of the oracle, we obtain a final state which depends on the value of f for
all possible inputs. This allows us to obtain “global” information about the function f
(e.g. determine some joint properties of all the values) with just one run of Uf , whereas
classically this may require many evaluations of f .

One can easily create such an equal superposition state |φm〉 by sending the m-qubit
state |0〉 . . . |0〉 throughm Hadamard gates H ⊗ · · · ⊗H . We have

H ⊗ · · · ⊗H(|0〉 . . . |0〉) = 1√
2m

(|0〉 + |1〉) . . . (|0〉 + |1〉)

= 1√
2m

∑
x1,...,xm

|x1〉 . . . |xm〉

= 1√
2m

∑
x∈Bm

|x〉 .

This creates a superposition of exponentially many terms using a linear amount of
Hadamard gates.

§4.5 Deutsch–Jozsa algorithm

Consider the black box problem for balanced vs. constant functions. This is when we
have a function f : Bn → B which is either constant or “balanced”, i.e. |f−1(0)| =
|f−1(1)| = 2n−1. The problem is to determine whether a f is balanced or constant.

Classically, one needs 2n−1 + 1 queries to solve the problem in the worst case. This
amount of queries is clearly sufficient; even if f is balanced, the first 2n−1 queries could
have equal outcomes, but the subsequent querymust have a different outcome. Suppose
that there exists an algorithm that can solve the problem in 2n−1 queries. An adversary
that controls the oracle can respond with 0 for every query, and subsequently choose
a function f that agrees with the earlier query results but is balanced or constant as
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required to cause the algorithm to produce an error. Therefore, classically we require a
query complexity of O(exp(n)).

Suppose we have a quantum oracle Uf with Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉, where |x〉 is an n-
qubit state and |y〉 is a 1-qubit state. Set each qubit to state |0〉, then act byH⊗n⊗ (H ·X)
on |x〉 |y〉. We then obtain the state |A〉 = 1√

2n
∑
x∈Bn |x〉 |−〉. Send this state through the

oracle to obtain Uf |A〉 = 1√
2nUf

∑
x∈Bn |x〉 |−〉. Note that

Uf |x〉 |−〉 = 1√
2
Uf (|x〉 |0〉 − |x〉 |1〉)

= 1√
2

(|x〉 |f(x)〉 − |x〉 |f(x)c〉)

=


1√
2 |x〉 (|0〉 − |1〉) = |x〉 |−〉 if f(x) = 0

1√
2 |x〉 (|1〉 − |0〉) = − |x〉 |−〉 if f(x) = 1

= (−1)f(x) |x〉 |−〉

Themethod of encoding all information into a phase is called phase kickback. Hence,

Uf |A〉 = 1√
2n
Uf

∑
x∈Bn

|x〉 |−〉 = 1√
2n

 ∑
x∈Bn

(−1)f(x) |x〉

 |−〉

We can then easily discard the last qubit, as it is now in a product state. We obtain

|f〉 = 1√
2n

∑
x∈Bn

(−1)f(x) |x〉

If f is constant,
|f〉 = ± 1√

2n
∑
x∈Bn

|x〉 = ±(H |0〉)⊗n

If we apply H⊗n to |f〉, we obtain ± |0〉⊗n. If f is balanced, writing |φn〉 =
1√
2n
∑
y∈Bn |y〉,

〈f |φn〉 = 1
2n

∑
x,y∈Bn

(−1)f(x) 〈y|x〉 = 1
2n

∑
x∈Bn

(−1)f(x) = 0

In this case, |f〉 is orthogonal to |φn〉. Applying H⊗n to |f〉, we have that H⊗n |f〉 is
orthogonal toH⊗n |φn〉 = |0〉⊗n.

After obtaining |f〉, we apply H⊗n and measure in the computational basis. If f is con-
stant, wemeasure 0 . . . 0 with probability 1, and if f is balanced, wemeasure 0 . . . 0 with
probability 0. This allows us to infer whether f is constant or balanced with probability
1.
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|0〉1 H

Uf

H  x1

|0〉2 H H  x2

...
...

|0〉n H H  xn

|0〉 X H discard

For this algorithm, we use one query and 3n+ 2 further operations.

Suppose we permit a probability ε > 0 of error. In the quantum case, we only need one
query. In the classical case, there is a randomised algorithm which solves the problem
with a constant number O

(
log 1

ε

)
of queries for all n. Choose k inputs each chosen

uniformly at random, and evaluate f(x) for each x in this set. If f(x) is constant for all
of these k inputs, we infer f is constant; otherwise we infer it is balanced. An error can
only occur when the function is balanced but we infer it is constant. The probability of
error is 2

2k = 2−k+1. Hence, we can take ε < 2−k+1, so k = O
(
log 1

ε

)
.

§4.6 Simon’s algorithm

Consider a function f : Bn → Bn with the promise that either f is injective, or f(x) =
f(y) if and only if y = x or y = x⊕ξ for a fixed 0 6= ξ ∈ Bn. The problem is to determine
with bounded error whether f is in the 1-1 form or the 2-1 form, and in the latter case,
to find the constant ξ. Note that f(x⊕ ξ) = f(x) is the statement that f has period ξ.

Classically, the query complexity is O(exp(n)). In order to solve the problem, we need
to find two distinct x, y inputs for which f(x) = f(y), or show that this is not possible.
However, there is a quantum algorithm with query complexity O(n).

§4.7 Quantum Fourier transform

Let VN be a state space, and BN = {|0〉 , |1〉 , . . . , |N − 1〉} be an orthonormal basis for
VN . Write ZN for integers modulo N , and let ω = e

2πi
N . For |k〉 ∈ BN , we define

QFTN |k〉 = 1√
N

N−1∑
ℓ=0

e
2πi
N
kℓ |ℓ〉 = 1√

N

N−1∑
ℓ=0

ωkℓ |ℓ〉
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The quantum Fourier transform can be viewed as a generalisation of the Hadamard
operator, as QFT2 = H .

We show that this is a unitary operator.

(QFT )jk = 〈j|QFT |k〉 = 1√
N

N−1∑
ℓ=0

ωkℓ 〈j|ℓ〉 = 1√
N
ωjk

QFT = 1√
N


1 1 1 1 · · ·
1 ω ω2 ω3 · · ·
1 ω2 ω4 ω6 · · ·
1 ω3 ω6 ω9 · · ·
...

...
...

... . . .


Let Sj be the sum of the jth row or column. If j = 0, Sj = 1√

N
N . Otherwise,

Sj = 1√
N

(1 + ωj + · · · + ωj(N−1)) = 1√
N

· 1 − ωjN

1 − ωj
= 0

We can use this to prove that (QFT †QFT )jk = δjk, so it is a unitary operator.

§4.7.1 Application: Periodicity Determination

Suppose we have a periodic function f : ZN → Y , where typically Y = ZM for some
M . Let r be the smallest integer in ZN for which f(x + r) = f(x) for all x ∈ ZN , so f
is periodic with period r. Suppose further that f is injective in each period. We wish to
find r with a particular probability of error.

There is a classical algorithm with query complexity O(
√
N) = O

(
2logN

1
2
)

=

O
(
2

1
2 logN

)
. In the quantum case, for any error probability ε ∈ (0, 1), there is an

algorithm with query complexity O(log logN), which provides an exponential speed
increase.

We first describe an attempt to construct such an algorithm without using the quantum
Fourier transform. Begin with the uniform superposition state |ψN 〉 = 1√

N

∑N−1
x=0 |x〉.

Consider the quantum oracleUf corresponding to f : ZN → ZM , defined byUf |x〉 |y〉 =
|x〉 |y + f(x)〉, where addition is performed moduloM . Set the output register |y〉 to |0〉,
and then compute |f〉 = Uf |ψN 〉 |0〉. We obtain

|f〉 = Uf |ψN 〉 |0〉 = 1√
N

N−1∑
x=0

Uf |x〉 |0〉 = 1√
N

N−1∑
x=0

|x〉 |f(x)〉

Since r is the period, we have r | N , so letA = N
r ∈ N be the number of periods. We now

measure the second register, giving an outcome y = f(x0) for some x0 ∈ {0, . . . , r − 1}.
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Note that y = f(x0 + jr) for any j ∈ {0, . . . , A− 1}. The terms in |f〉 which contribute
to the outcome y = f(x0) are

1√
N

A−1∑
j=0

|x0 + jr〉 |f(x0)〉

Hence, the probability of obtaining a particular outcome f(x0) is A
N = 1

r . Then, the
post-measurement state of the input register is

|per〉 = 1√
A

A−1∑
j=0

|x0 + jr〉

The state |per〉 is periodic. If we measure the input register, we obtain |x0 + j0r〉 for
some j0 ∈ {0, . . . , A− 1}, selected uniformly at random. The probability that the out-
come of this second measurement is x0 + j0r is 1

A . Therefore, no information about r is
obtained.

We resolve this issue by utilising the quantum Fourier transform. Instead of measuring
the input register, we act on |per〉 by QFTN . Since

QFTN |x〉 = 1√
N

N−1∑
y=0

ωxy |y〉

we find

QFTN |per〉 = 1√
A

N−1∑
y=0

QFTN |x0 + jr〉

= 1√
A

1√
N

A−1∑
j=0

N−1∑
y=0

ω(x0+jr)y |y〉

= 1√
NA

N−1∑
y=0

ωx0y

A−1∑
j=0

(ωry)j


︸ ︷︷ ︸
S

|y〉

Note that Ar = N and

S =
{
A if ωry = 1
1−ωryA
1−ωry = 0 otherwise

Note that ωry = 1 if y = kA = kN
r for k ∈ {0, . . . , r − 1}. Hence, we obtain

QFTN |per〉 = A√
NA

r−1∑
k=0

ωx0
kN
r

∣∣∣∣kNr
〉

= 1√
r

r−1∑
k=0

ωx0
kN
r

∣∣∣∣kNr
〉

The value of x0 is no longer present in a ket, and has been converted into phase inform-
ation. It therefore does not affect measurement outcomes. The periodicity in r has been
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inverted into periodicity in 1
r . The resulting state is still periodic, but each period begins

at 0 instead of x0.

Now, whenmeasuring this register, the outcome is c = k0N
r for some k0 ∈ {0, . . . , r − 1}.

Each outcome occurs with probability r−1. Note that k0
r = c

N , and c
N is known after

performing the measurement; we wish to know the value of r.

Suppose first that k0 is coprime to r. In this case, we can cancel c
N to its lowest form,

then the denominator is r. If k0 is not coprime to r, the denominator r̃ will instead be a
factor of r. To solve this, we can compute the reduced denominator and then evaluate
f(0), f(r̃); if they are equal, r̃ = r, and otherwise, r̃ | r. We would like to know the
probability that a randomly chosen k0 is coprime to the true periodicity r.

Theorem 4.1 (Coprimality Theorem)
Let φ(r) denote the number of integers less than r that are coprime to r. Then there
exist c > 0, r0 > 0 such that for all r ≥ r0, φ(r) ≥ c r

log log r . In particular, φ(r) =
Ω
(

r
log log r

)
.

This theorem implies that since k0 is chosen uniformly at random, the probability that
k0 is coprime to r isO

(
1

log log r

)
. We claim that if we repeat this processO(log log r) times,

we will obtain an outcome c such that after cancellation, c
N = k0

r where k0 is coprime to
r in at least one case, with a constant probability. This claim follows from the following
lemma.

Lemma 4.1
Suppose that a single trial has success probability p, and the trial is repeated M
times independently, for any ε ∈ (0, 1), the probability of at least one success is
greater than 1 − ε ifM = − log ε

p .

Therefore, to achieve a constant probability 1 − ε of success, we needO
(

1
p

)
trials. In the

algorithm above, p = O
(

1
log log r

)
, so we need O(p) = O(log log r) < O(log logN) trials

to achieve the desired result.

In each invocation of the algorithm, we query f three times: once to construct the
state |f〉, and twice to check if r̃ is the true periodicity. We also need to apply the
quantum Fourier transform QFTN , which has implementations in O((logN)2) steps.
We must also perform standard arithmetic operations such as to cancel denominators,
which are computable in O(poly(logN)) steps. Therefore, we succeed in determining
the period with any constant probability of success 1 − εwith O(log logN) queries and
O(poly(logN)) additional steps.
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§4.8 Efficient implementation of quantum Fourier transform - Non
Examinable

We can implement a quantum Fourier transform using O(poly(logN)) gates if N = 2n.
In this case, QFTN acts on n qubits. If N 6= 2n, we do not have an efficient implement-
ation; in this case, we approximate N by 2k for some k ∈ Z. In the case N = 2n, we
demonstrate a quantum circuit of size O(n2).

If x ∈ Zn = {0, . . . , 2n − 1}, note that

QFTN |x〉 = 1√
N

N−1∑
y=0

ωxy |y〉

We can represent x and y by n-bit strings.

x = (x0, x1, . . . , xn−1); x =
n−1∑
i=0

2ixi

Now, ωxy = exp
[

2πi
2n xy

]
.

xy

2n
= 1

2n
[
(x0 + 2x1 + · · · + 2n−1xn−1)(y0 + 2y1 + · · · + 2n−1yn−1)

]
Retaining only the fractional terms of xy2n , as integral parts do not contribute to the final
result, we obtain

yn−1(.x0) + yn−2(.x1x0) + · · · + y0(.xn−1 . . . x0)

where for instance .x1x0 = x1
2 + x0

22 . Hence,

QFT |x〉 = 1√
2n

∑
y0,...,yn−1∈{0,1}

exp
[2πixy

2n
]

|yn−1〉 . . . |y0〉

=

 1√
2

∑
yn−1∈{0,1}

exp [2πiyn−1(.x0)] |yn−1〉

 · · ·

 1√
2

∑
y0∈{0,1}

exp [2πiy0(.xn−1 . . . x0)] |y0〉


= 1√

2

(
|0〉 + e2πi(.x0) |1〉

)
. . .

1√
2

(
|0〉 + e2πi(.xn−1...x0) |1〉

)
To implement the quantum Fourier transform, we will use the Hadamard gate, the 1-
qubit phase gate, and the 2-qubit controlled phase gate. Note that we can write

H |x〉 = 1√
2

[
|0〉 + e2πi(.x) |1〉

]
For any d ∈ Z+, the phase gate is given by

Rd =
(

1 0
0 exp

[
iπ
2d
]) =


1 0

0 exp

2πi(. 0 . . . 0︸ ︷︷ ︸
d zeroes

1)
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Note that Rd |0〉 = |0〉 and Rd |1〉 = e2πi(.0...01) |1〉. In the case d = 1, we obtain R1 |1〉 =
e2πi(.01) |1〉 = i |1〉. The two-qubit controlled phase gate, denoted CRd, is drawn

|ψ〉 Rd

|φ〉 •

If |φ〉 = |0〉, CRd |0〉 |ψ〉 = |0〉 |ψ〉. If |φ〉 = |1〉, CRd |1〉 |ψ〉 = |1〉Rd |ψ〉. We will now
describe the quantum circuit for QFT8, so N = 8 and n = 3.

|x2〉 H R1 R2 |y0〉

|x1〉 • H R1 |y1〉

|x0〉 • • H |y2〉

Applying the given gates to |x2〉, we obtain

|x2〉 H−→ 1√
2

[
|0〉 + e2πi(.x2) |1〉

]
R1−−→ 1√

2

[
|0〉 + e2πi(.x2)e2πi(.0x1) |1〉

]
R2−−→ 1√

2

[
|0〉 + e2πi(.x2)e2πi(.0x1)e2πi(.00x0) |1〉

]
= 1√

2

[
|0〉 + e2πi(.x2x1x0) |1〉

]
= |y0〉

as required. Typically, after applying the above circuit, we will swap the states
|y0〉 , |y1〉 , |y2〉 to be in reverse order; this takes O(n) gates.

In this implementation, we used 3Hadamard gates, and 2+1 = 3 controlled phase gates.
If N = 2n, we need n Hadamard gates and n(n−1)

2 = O(n2) controlled phase gates.

§4.9 Grover’s algorithm

Suppose we have a large unstructured database of N items, in which we aim to locate
a particular ‘good’ item. Suppose that given an item, we can easily check if it is the
‘good’ item. We wish to construct an algorithm to locate this good item with success
probability at least 1 − ε. Each access to the database is considered a query.

In the classical case, we need O(N) queries: if we find a bad item, it gives us no in-
formation about the location of the good item. The probability that any item is good is
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1
N . Given M queries, the probability of success is M

N ≥ 1 − ε, so M ≥ (1 − ε)N gives
M = O(N). In the quantum case, O(

√
N) queries are necessary and sufficient. This is

not an exponential speedup but a quadratic speedup.

Let V be a vector space, and let |v〉 ∈ V . We define the rank 1 projection operator Π|α〉 =
|α〉〈α|, and the reflection operator I|α〉 = I − 2 |α〉〈α|. Note that I|α〉 |α〉 = − |α〉. Let
|ψ〉 ∈ S⊥

|v〉 = span {|β〉 ∈ V | 〈α|β〉 = 0} . Then I|α〉 |ψ〉 = |ψ〉 − 2 |α〉 〈α|ψ〉 = |ψ〉.

For any unitary operator U acting on V , we have UΠ|α〉U
† = U |α〉〈α|U † = ΠU |α〉. Note

also that UI|α〉U
† = U(I − 2 |α〉〈α|)U † = I − 2 |Uα〉〈Uα| = IU |α〉.

If V = C2, for all |α〉 ∈ V , let
∣∣∣α⊥

〉
be orthogonal to |α〉. For all |v〉 ∈ V , we can write

|v〉 = a |α〉 + b
∣∣∣α⊥

〉
, so Π|α〉 |v〉 = a |α〉 and I|α〉 |v〉 = −a |α〉 + b

∣∣∣α⊥
〉
.

Let N = 2n, so we can label each item in the database with an n-bit binary string. We
will convert the search problem into a black-box promise problem. The database corres-
ponds to the Boolean function f : Bn → B where f(x0) = 1 for a particular x0 ∈ Bn, and
f(x) = 0 otherwise. The corresponding quantum oracle is Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉,
where |x〉 ∈ (C2)⊗n and |y〉 ∈ C2. The fact that the database is unstructured corres-
ponds to the fact that the quantum oracle Uf is a black box. We will use the operator
Ix0 , which has the following action on the basis vectors.

Ix0 |x〉 =
{

+ |x〉 if x 6= x0

− |x〉 if x = x0

If x0 = 0 . . . 0 ∈ Bn, we define I0 = Ix0 . Note that Ix0 can be implemented using Uf ;
indeed,

Uf |x〉 |−〉 = 1√
2
Uf |x〉 (|0〉 − |1〉)

= 1√
2

(|x〉 |f(x)〉 − |x〉 |f(x)c〉)

=


1√
2 |x〉 (|0〉 − |1〉) if x 6= x0

1√
2 |x〉 (|1〉 − |0〉) if x = x0

=
{

+ |x〉 |−〉 if x 6= x0

− |x〉 |−〉 if x = x0

Hence, Uf |x〉 |−〉 = (Ix0 |x〉) |−〉. So if |ψ〉 ∈ (C2)⊗n, |ψ〉 = a0 |x0〉 +
∑
x 6=x0 ax |x〉 gives

Uf |ψ〉 |−〉 = (Ix0 |ψ〉) |−〉 = −a0 |x0〉 +
∑
x 6=x0 ax |x〉.

Given a black box which computes Ix0 for some x0 ∈ Bn, we wish to determine x0
with the least amount of queries. We will now describe Grover’s algorithm. We begin
with the equal superposition state |ψ0〉 = 1√

2n
∑
x∈Bn |x〉. Consider Grover’s iteration
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operator Q = −HnI0HnIx0 = −Iψ0Ix0
2 where Hn = H⊗n. Note that Q is real-valued,

so acts geometrically on the real-valued vector |ψ0〉 in real Euclidean space. It has the
following properties.

1. In the plane P(x0) spanned by |x0〉 and |ψ0〉,Q acts as a rotation through an angle
2α where sinα = 1√

2n .

2. In the plane orthogonal to P(x0), Q acts as −I .

We repeatedly applyQ to |ψ0〉 to obtain the rotated vector |ψ′
0〉, and then measure in the

computational basis. ∣∣ψ′
0
〉

= a0 |x0〉 +
∑
xi 6=x0

∑
ai |xi〉

Hence, the probability that the outcome is x0 is |a0|2 = |〈x0|ψ′
0〉|2 = |cos δ|2 ≈ 1 where δ

is the angle between |ψ′
0〉 and |x0〉.

If n is large, |ψ0〉 is almost orthogonal to |x0〉, with 〈x0|ψ0〉 = 1√
2n = cosβ. By property

(1), Q acting on |ψ0〉 rotates the state by 2α, where sinα = 1√
2n . Letm be the number of

iterations needed to rotate |ψ0〉 close to |x0〉. Then

m = β

2α
=

arccos
(

1√
2n

)
2 arcsin

(
1√
2n

)
Since sinα ≈ α, this implies that 2α ≈ 2 sinα = 2√

2n . Then 2αm ≈ π
2 , som ≈ π

4α = π
4
√
N .

The number of iterations is independent of |x0〉; it depends only on n.

Example 4.1
Consider a database with four items, so n = 2, N = 4. Here, sinα = 1

2 , so α = π
6 . Q

causes a rotation through 2α = π
3 . The initial state is

|ψ0〉 = |++〉 = 1
2

(|00〉 + |01〉 + |10〉 + |11〉)

For anyx0 ∈ B2, we have cosβ = 〈x0|ψ0〉 = 1
2 so β = π

3 . Therefore, we needprecisely
one iteration, which rotates |ψ0〉 to |x0〉 exactly. Performing a measurement in the
computational basis, we obtain x0 with certainty.

We now prove the geometric properties of Q. First, note that Q = −HnI0HnIx0 =
−I|ψ0〉I|x0〉. If |α〉 , |v〉 ∈ V and |v〉 ∈ P(x0), we have

• I|x0〉 |v〉 = |v〉 − 2 〈x0|v〉 |x0〉;

• I|ψ0〉 |v〉 = |v〉 − 2 〈ψ0|v〉 |ψ0〉.

2HnI0Hn = IH|0〉 = Iψ0 .
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These operators are reflections about lines perpendicular to |x0〉 and |ψ0〉 respectively.
Thus, P(x0) is stable under the action of I|x0〉 and I|ψ0〉.

LetM1,M2 be lines in the Euclidean plane, intersecting atO. Let θ be the angle between
M1 andM2. Then, reflection aboutM1 thenM2 acts as an anticlockwise rotation by 2θ
about O.

In our case, the angle between the lines perpendicular to |x0〉 and |ψ0〉 is β. Therefore,
I|ψ0〉I|x0〉 is an anticlockwise rotation by an angle of 2β. For any real unit vector v ∈ R2,
we have −Iv = Iv⊥ where v⊥ is a unit vector orthogonal to v. Hence, −I|ψ0〉I|x0〉 =
I|ψ⊥

0 〉I|x0〉, which is an anticlockwise rotation by an angle of 2α, as α + β = π
2 . This

proves property (1).

Now consider |ξ〉 ∈ P(x0)⊥ perpendicular to |ψ0〉 and to |x0〉. Clearly I|x0〉 |ξ〉 = |ξ〉 and
I|ψ0〉 |ξ〉 = |ξ〉. So Q |ξ〉 = − |ξ〉, giving property (2).

Grover’s algorithm achieves an unstructured search for a unique good item in approx-
imately π

4
√
N queries, and there is no algorithm that has smaller asymptotic query com-

plexity. Any quantum algorithm that achieves this search in an unstructured database
of sizeN must use O(

√
N) queries. Moreover, it can be shown that π4 (1 − ε)

√
N queries

are insufficient for each ε, so Grover’s algorithm is tight.

§4.10 Grover’s algorithm for multiple items

Consider the case where there are r ≥ 1 good items, and r is known. Here, f(xi) = 1 if
i = 1, . . . , r, and f(x) = 0 otherwise, where x1, . . . , xr are the binary labels for the good
items. We want to find any of the good items. Then, define

IG |x〉 = I − 2
r∑
i=1

|xi〉〈xi| =
{

+ |x〉 x 6∈ {x1, . . . , xr}
− |x〉 x ∈ {x1, . . . , xr}

Note that IG is not of the form I|v〉 for a single vector |v〉. Now, define QG =
−HnI0HnIG = −I|ψ0〉IG. Let |ψG〉 = 1√

r

∑r
i=1 |xi〉 be an equal superposition of the good

states, and |ψB〉 = 1√
N−r

∑N
i=r+1 |xi〉 be an equal superposition of the bad states. Note

that 〈ψG|ψB〉 = 0. Begin with the equal superposition state.

|ψ0〉 = (H |0〉)⊗N =
√
r√
N

|ψG〉 +
√
N − r√
N

|ψB〉

Consider the plane PG spanned by |ψG〉 and |ψ0〉, which contains |ψB〉. Let α be the
angle between |ψG〉 and

∣∣∣ψ⊥
0

〉
.

We show that in the plane PG, QG acts as a rotation through an angle 2α where sinα =
〈ψ0|ψG〉 =

√
r√
N
. The states |ψG〉 , |ψB〉 form an orthonormal basis for PG. We find

IG(a |ψG〉 + b |ψB〉) = −a |ψG〉 + b |ψB〉; indeed, restricting to the plane PG, the action
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of IG is precisely the action of I|ψG〉. Hence, as before, QG causes the desired rotation
through 2α in this plane. The probability of finding a single good item is |〈ψ|ψG〉|2, as
|ψ〉 = a |ψG〉 + b |ψB〉.

r unknown - Non Examinable

Suppose now that r is unknown. In this case, we start with |ψ0〉 and repeatedly apply
Q to rotate |ψ0〉 to |ψG〉 as before. However, we do not know how many iterations of Q
to apply, since this depends on r.

If r � N , we choose K uniformly at random in
(
0, π4

√
N
)
, and apply K iterations

of Q. We measure the final state
∣∣∣ψK〉 to obtain x, and check if f(x) = 1 or not.

Note that each iteration causes a rotation of 2α where sinα =
√
r√
N

so 2α ≈ 2
√
r√
N
.

Choosing K therefore implicitly chooses a random angle in the range
(
0, π2

√
r
)
. Now,

if the final rotated state |ψ〉 makes an angle within ±π
4 with |ψG〉, the probability

of locating a good item is |〈ψ|ψG〉|2 ≥ cos2 π
4 = 1

2 . Since for every quadrant in the
plane PG, half of the angles are within ±π

4 from the y-axis, the randomised proced-
ure using O(

√
N) queries will locate a good item with probability approximately 1

4 .
The procedure can then be repeated to reduce the error probability to an acceptable level.

§4.11 NP problems

A verifier V for a language L is a computation with two inputs w, c such that

1. if w ∈ L, there exists a certificate of membership c such that V (w, c) halts in an
accepting state; and

2. if w 6∈ L, for any c, V (w, c) halts in a rejecting state.

V is a poly-time verifier if for all inputsw, c, the algorithm V runs in polynomial time in
n, where n is the size of the input w. A problem in the non-deterministic polynomial-
time complexity class NP is easy to verify, but may be hard to solve. More precisely, a
language L is in NP if it has a polynomial time verifier V .

Alternatively, consider a computer operating non-deterministically; at each binary
choice, the computer duplicates itself and performs both branches in parallel. We
require that all possible paths eventually halt with either an accepting or rejecting
state. The running time of a given algorithm is the length of the longest path. The
computation is defined to accept its input if at least one path accepts it, and rejects its
input if all paths reject it. One can check that NP is precisely the class of languages that
are decided by a non-deterministic computation with polynomial running time.
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Let f : Bn → B be a Boolean formula. The Boolean satisfiability problem SAT seeks an
assignment of the variables x1, . . . , xn such that f(x1, . . . , xn) = 1. Any such assignment
is called a satisfying assignment. This problem clearly lies in NP; if f is satisfiable, then
c is any assignment for which V (f, c) = 1 where V (f, c) = f(c). Brute-force methods
have O(2n) runtime.

Searching for arbitrarily many good items in an unstructured database corresponds to
SAT. Assuming that there are few satisfying assignments, we can run the randomised
Grover’s algorithm to give a quantum algorithm for solving SAT in O(

√
2n) time with

low probability of error. Any NP problem can be converted into an application of SAT;
we say SAT isNP-complete. Grover’s algorithm can hence be applied to anyNP problem
to provide a quadratic speedup.

§4.12 Shor’s algorithm

SupposeN is a positive integer and n = dlogNe is the number of bits in a binary repres-
entation of N . We wish to factorise N . We will describe an algorithm which, given N
and a fixed acceptable probability of error, outputs a factor 1 < k < N , or outputs N if
N is prime. This algorithm runs in polynomial time in n; there is no classical algorithm
with this property.

We first use results from number theory to convert the problem into a periodicity de-
termination problem. Then, we apply the quantum period-finding algorithm using the
quantum Fourier transform.

Choose an integer 1 < a < N uniformly at random, and compute b = gcd(a,N). If
b > 1, then b | N so is a factor; in this case we simply output b. If b = 1, then a,N are
coprime.

Theorem 4.2 (Euler’s theorem)
Let a,N be coprime. Then there exists 1 < r < N s.t. ar ≡ 1 mod N . A minimal
such r is called the order of amodulo N .

Consider the modular exponentiation function f : Z → Z⧸NZ s.t. f(k) = ak mod
N . This function satisfies f(k1 + k2) = f(k1)f(k2). f is periodic with period r, and is
injective within each period as r minimal.

Suppose that we can find r, and suppose r is even. Then ar − 1 ≡ (a
r
2 + 1)(a

r
2 − 1) ≡ 0

mod N . Note that N ∤ (a
r
2 − 1) since r was minimal s.t. ar ≡ 1 mod N . If N ∤ (a

r
2 + 1),

then N must have some prime factors in (a
r
2 + 1) and some in (a

r
2 − 1). We can use

Euclid’s algorithm to compute gcd(a
r
2 + 1, N) and gcd(a

r
2 − 1, N), which are factors of

N . Thus, we find factors of N provided r is even and a r2 + 1 6≡ 0 mod N .
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Consider N = 15, a = 7. Then f(k) = 7k mod 15 takes values 1, 7, 4, 13, so has period
r = 4. This is even, so we can write ar − 1 = (a

r
2 + 1)(a

r
2 − 1) = 50 · 48. N = 15 does not

divide 50, so gcd(50, N) = 5 is a factor, and gcd(48, 15) = 3 is a factor.

Theorem 4.3
Let N be odd and not a prime power. Then, choosing a uniformly at random s.t.
gcd(a,N) = 1, the probability that r is even and (a

r
2 + 1) 6≡ 0 mod N is at least 1

2 .

This implies that if N is odd and not a prime power, we obtain a factor of N with prob-
ability at least 1

2 . We repeat this process until the probability of not finding a factor is
acceptably low. If N is even, we simply output 2 as a factor.

Lemma 4.2
Let N = cℓ for some c, ℓ ∈ N. There is a classical polynomial-time algorithm that
computes c.

Shor’s algorithm can be summarised as follows.

1. Test if N is even; if so, output 2 and halt.

2. Run the classical algorithm to test if N is of the form cℓ with ℓ > 1; if so, output c
and halt.

3. Choose 1 < a < N uniformly at random and compute b = gcd(a,N). If b > 1,
output b and halt.

4. Find the period r of the modular exponentiation function f(k) = ak mod N . If
this fails, return to step (3).

5. If r is even and (a
r
2 + 1) 6≡ 0 mod N , compute t = gcd(a

r
2 + 1, N); if 1 < t < N ,

output t and halt. Otherwise, return to step (3).

We now describe the method to compute the period of the modular exponentiation
function. Note that f : Z → ZN , not ZN → ZM ; we therefore cannot directly use the
algorithm discussed previously. We must first truncate the domain Z to some ZM . If
r is unknown, f will not necessarily be periodic on ZM . However, if M is O(N2), the
single incomplete period has a negligible effect on the periodicity determination. We
will defineM = 2m for somem and use QFTM .

Consider a finite domainD = {0, . . . , 2m − 1}, wherem is the smallest integer s.t. 2m >

N2. Suppose 2m = Br+ bwhere 0 ≤ b < r, soB =
⌊

2m
r

⌋
. We start with the equal super-

position state |ψm〉 = 1√
2m
∑
x∈D |x〉. Consider the quantum oracle Uf corresponding to

the modular exponentiation function f . Then

|Ψ〉 = Uf |ψm〉 |0〉
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= 1√
2m

∑
x∈D

|x〉 |f(x)〉

= 1√
2m

b−1∑
x0=0

B∑
j=0

|x0 + jr〉 |f(x0)〉 + 1√
2m

r∑
x0=b

B−1∑
j=0

|x0 + jr〉 |f(x0)〉

Measuring the second register, we obtain an outcome y = f(x0). In the case x0 <
b, f(x0) = f(x0 + jr) for j ∈ {0, . . . , B}. If x0 ≥ b, f(x0) = f(x0 + jr) for j ∈
{0, . . . , B − 1}.

If y = f(x0) for x0 < b, the probability of measuring y is B+1
2m . The post-measurement

state of the first register is |per〉 = 1√
B+1

∑B
j=0 |x0 + jr〉. In the case x0 ≥ b, we have

|per〉 = 1√
B

∑B−1
j=0 |x0 + jr〉 with prob B

2m . In both cases,

|per〉 = 1√
A

A−1∑
j=0

|x0 + jr〉

where A = B + 1 if y = f(x0) with x0 < b and A = B if y = f(x0) with x0 ≥ b. We act
on |per〉 by QFT2m to obtain

QFT2m |per〉 = 1√
A

1√
2n

A−1∑
j=0

2m−1∑
c=0

ω(x0+jr)c |c〉

= 1√
A

1√
2n

2m−1∑
c=0

ωx0c

A−1∑
j=0

(ωcr)j


︸ ︷︷ ︸
S

|c〉

where ω = 2
2πi
M where M = 2m. S is a geometric series with α = ωcr. If α = 1 then

c | Mr . But if
M
r 6∈ Z, this cannot be true. We claim that a measurement on QFT2m |per〉

yields an integer cwhich is close to a multiple of Mr with high probability.

Consider k 2m
r for k = 0, . . . , r − 1. Each of these multiples is within 1

2 of a unique
integer; indeed, r < N and 2m > N2, giving that k 2m

r cannot be a half integer. Consider
the values of c s.t.

∣∣∣c− k 2m
r

∣∣∣ < 1
2 for k = 0, . . . , r − 1.

Theorem 4.4
Suppose that QFT2m |per〉 =

∑2m−1
c=0 g(c) |c〉, and that we measure the state and

receive an outcome c. Let ck be the unique integer s.t.
∣∣∣ck − k 2m

r

∣∣∣ < 1
2 . Then

P (c = ck) > γ
r for a fixed constant γ (which can be shown to be 4

π2 ). Moreover,
the probability that k, r are coprime is Ω

(
1

log log r

)
by the coprimality theorem.

Thus, with O(log logN) > O(log log r) repetitions, we obtain a good c value with high
probability. Suppose that we measure c s.t.

∣∣∣c− k 2m
r

∣∣∣ < 1
2 , so

∣∣∣ c2m − k
r

∣∣∣ < 1
2m+1 . Recall
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that r < N and m is minimal s.t. 2m > N2. Then
∣∣∣ c2m − k

r

∣∣∣ < 1
2N2 . Note that c

2m is
known.

We show that there is atmost one fraction k
r with denominator r < N s.t.

∣∣∣ c2m − k
r

∣∣∣ < 1
2N2 .

Suppose k′

r′ ,
k′′

r′′ both satisfy this requirement. Then∣∣∣∣k′

r′ − k′′

r′′

∣∣∣∣ = |k′r′′ − k′′r′|
r′r′′ ≥ 1

r′r′′ >
1
N2

But
∣∣∣ c2m − k′

r′

∣∣∣, ∣∣∣ c2m − k′

r′

∣∣∣ < 1
2N2 , contradicting the triangle inequality. This result is the

reason for choosingmminimal s.t. 2m > N2. Therefore, we have with high probability
that c

2m is close to a unique fraction k
r .

Example 4.2
Let N = 39 and choose a = 7; note that 7 and 39 are coprime. Let r be the period
of f(k) = ak mod 39. Note that 210 < N2 < 211, so set m = 11. Suppose that
QFT211 |per〉 gives a measurement of c. Then

∣∣∣c− k 211

r

∣∣∣ < 1
2 with probability γ

r .

Suppose c = 853. One can explicitly check all fractions of the form a
b to find one that

satisfies
∣∣∣ab − 853

2048

∣∣∣ < 1
212 . This is consistent with a

b = 5
12 ,

10
24 ; as we are constrained

by coprimality we must choose r = 12. One can check that 712 ≡ 1 mod 39, hence
r = 12. Note that O(N2) = O(exp(n)) computations are needed for this calculation;
there is a more efficient way to compute a, b using continued fractions.

A rational number st can be written in the form of a continued fraction
s

t
= 1
a1 + 1

a2+ 1
···+ 1

aℓ

= [a1, . . . , aℓ]

where a1, . . . , aℓ are positive integers. We can write s
t = 1

t
s

= 1
a1+ s1

t1
, and so on. For

example, if st = 13
35 , we can find a1 = 2, a2 = 2, a3 = 1, a4 = 1, a5 = 2 and ℓ = 5. Since the

sequence tk is decreasing, the expansionwill always terminate. For each k = 1, . . . , ℓ, we
can truncate the computation at level k. This gives the sequence of rational numbers

p1
q1

= [a1], p2
q2

= [a1, a2], . . . , pℓ
qℓ

= [a1, . . . , aℓ] = s

t

pk
qk

is the kth convergent of the continued fraction s
t .

Lemma 4.3
Let a1, . . . , aℓ be positive reals, and let p0 = 0, q0 = 1, p1 = 1, q1 = a1. Then,

1. [a1, . . . , ak] = pk
qk

where pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2;
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2. if the ak are integers, then so are the pk and qk, with qkpk−1 − pkqk−1 = (−1)k
for k ≥ 1, and moreover gcd(pk, qk) = 1.

Theorem 4.5
Consider a continued fraction s

t = [a1, . . . , aℓ], and let pkqk be the kth convergent. If s
and t are given bym-bit integers, then the length ℓ of the continued fraction isO(m),
and the continued fraction and its convergents can be computed in O(m3) time.

Proof sketch. Wehave ak ≥ 1 and pk, qk ≥ 1. Part (i) of the above lemma implies that
(pk) and (qk) are increasing sequences. If k is even, pk ≥ 2pk−2 and qk ≥ 2qk−2 hence
pk, qk ≥ 2

k
2 . Thus, in general, pk, qk ≥ 2b k2 c. We therefore need at most ℓ = O(m)

iterations to obtain s
t exactly, since qk, pk are coprime and each are at least 2b k2 c.

The computation of each successive ak value involves division of O(m)-bit integers
and converting it into an integer and remainder term; these computations can be
performed inO(m2) time. Hence, the entire computation requires onlyO(m3) time.

Theorem 4.6
Let x ∈ Q with 0 < x < 1. Let pq ∈ Q s.t.

∣∣∣x− p
q

∣∣∣ < 1
2q2 . Then p

q is a convergent of
the continued fraction expansion of x.

In our situation, we have c s.t. ∣∣∣∣ c2m − k

r

∣∣∣∣ < 1
2N2 ; r < N

In particular,
∣∣∣ c2m − k

r

∣∣∣ < 1
2r2 , andwehave seen that there is atmost one fraction k

r s.t. this
holds. Note that 0 < c < 2m, so 0 < c

2m < 1. Hence, kr is a convergent of c
2m . Note that

2m > N2 > 2m−1, so c, 2m areO(m)-bit integers, and hence the sequence of convergents
(and in particular k

r ) can be computed in O(m3) time. We can then explicitly check for
each convergent kr if

∣∣∣ c2m − k
r

∣∣∣ < 1
2N2 and r < N hold.

Example 4.3
Consider again N = 39 and 2m = 211 = 2048. Suppose c = 853. Then one can
explicitly compute

c

2m
= 853

2048
= [2, 2, 2, 42, 4]
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Its convergents are
1
2

; 2
5

; 5
12

; 212
509

; 853
2048

Only 5
12 satisfies

∣∣∣ c2m − k
r

∣∣∣ < 1
2N2 and r < N . So r = 12 is the period.

A classical factoring algorithm takes O
(
exp

(
n

1
3
))

time; we analyse the time complex-
ity of Shor’s algorithm. Consider the case when N is odd and not a prime power, and
let n = logN . The modular exponentiation function requires O(m) = O(n) multiplica-
tions, each of which take O(m2) = O(n2) time, so this algorithm takes O(n3) time. The
construction of the equal superposition state requires m = O(n) Hadamard gates, and
applying the quantum oracle gives the state 1

2m
∑
x∈Bm |x〉 |f(x)〉 in O(n3) steps. We

measure the second register which contains O(n) qubits, hence requiring O(n) single-
qubit measurements. The first register is then in state |per〉. We then apply the quantum
Fourier transformQFT2m , which can be implemented inO(m2) = O(n2) steps. We then
measure the first register to obtain c, requiring O(n) single-qubit measurements. Then,
we find r from c using the continued fraction algorithm, requiring O(n3) steps. A good
c value is obtainedwith probability 1−εwithO(log logN) = O(logn) repetitions. Then,
t = gcd(a

r
2 + 1, N) is computed using Euclid’s algorithm, takingO(n3) steps. If r is odd

or is even but t = 1, then we return to the start, and the case where r is even and t 6= 1
occurs with probability at least 1 − ε if we perform log 1

ε repetitions.
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